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Abstract 

In judging the effectiveness of methods of solving 
crystal structures, or in phase refinement and devel- 
opment, two criteria are commonly used. The first is 
the mean phase error, which may be weighted in 
some way, and the second is the map correlation 
coefficient which describes the similarity of a map 
with estimated phases to that with true phases. It is 
shown that these two measures are directly related 
and that given the individual phase errors the map 
correlation coefficient may be found without the 
need to calculate a map. Various aspects of this 
connection are examined, including the map 
correlation coefficient when weights are used for 
calculating maps and the conditions under which 
phase extension leads to maps with a higher map 
correlation coefficient - which involves a balance 
between the advantage of employing more data and 
the disadvantage that the extra data may have a 
higher average phase error. 

Introduction 

In the development of new methods of solving crys- 
tal structures or of phase extension and refinement it 
is customary to use known structures for testing 
purposes. By this means the actual effectiveness of 
procedures can be assessed by comparison of the 
results obtained with some target - for example, the 
phases calculated from the finally refined model, 
which can be thought of as true phases. 

In general those working on the development of 
direct methods have tended to express their results in 
terms of phase errors 

A~o(h) = q~t(h) - q~e(h) (1) 

where ~o,(h) and ~oe(h) are the true and estimated 
phases, respectively. The most commonly quoted 
overall measures of effectiveness are either the mean 
phase error ~:--Aq~I or the root-mean-square phase 
error (A~-~ ~J2. Very often the process of phase deter- 
mination or phase refinement gives phase errors cor- 
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related with the structure amplitude and in this case 
weighted phase errors are informative with weights 
IEI commonly used, where the E's are the 
normalized structure factors. 

In the field of protein crystallography where, in 
general, the data do not extend to atomic resolution 
( - 1 . 5  A), the critical stage in structure determina- 
tion is the production of a map which can be inter- 
preted in terms of some molecular model. Silva & 
Viterbo (1980) considered the relationship between 
the root-mean-square phase error and the quality of 
the map calculated with estimated phases. They 
restricted their analysis to small structures with data 
at atomic resolution and the map quality was judged 
by the number of map peaks within some reasonably 
small distance of the atomic positions. Such an 
approach is clearly inappropriate to low-resolution 
data since atomic peaks would not occur for such 
comparisons of distance to be made. A figure of 
merit based on the probable interpretability of a map 
is regarded as the most relevant in developing 
methods to be applied to proteins and this is often 
taken as the map correlation coefficient, defined as 

p t(r)pe(r)- p,(r) pe(r) R = _ _ (2) 

where p,(r) and pe(r) are the map densities found 
with the true and estimated phases and the averages 
are over the whole unit cell. The values of density 
used for the averages are conventionally taken at 
grid points in a cell and the value of R is then the 
normal linear correlation coefficient of the two sets 
of numbers so obtained. A value of R greater than 
0.5 usually indicates a promising starting point for 
map interpretation but sometimes successful struc- 
ture determinations can be started with substantially 
lower values. Refaat & Woolfson (1993) showed this 
by the application of the low-density elimination 
(LDE) method to the known structure of ribo- 
nuclease RNAp 1 (Bezborodova, Ermekbaeva, 
Shlyapnikov, Polyakov & Bezborodov, 1988). This 
structure has space group P21 with a = 32.01, b--  
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49.76, c = 30.67/k and /3 = 115.83 ° and contains 96 
amino-acid residues plus 83 water molecules in the 
asymmetric unit. There are 28853 independent 
observed reflections out to 1.17 A, resolution. By 
means of the LDE method, which involves no inter- 
mediate interpretation of the map, the map 
correlation coefficient was increased from a starting 
value of 0.222 to a final value of 0.697. Since ribo- 
nuclease RNApl  is a small protein with high- 
resolution data it may be unwise to generalize from 
it, so we suggest that 0.4 may be a more realistic 
estimate of a potentially useful starting point. 

It is clear that there is some relationship between 
mean phase errors and map correlation coefficients 
and our purpose here is to show the form of that 
relationship. 

Inserting results (2), (6) and (9) into (2) we find 

Z IFo(h)l 2. (10) R -  h(h ~, 0, I g"(h)12COS [Zl'P(h)] h(h ;~ 0) 

This shows that R is an 'FI2-weighted average of 
the values of cos(A~o), with the origin term, which 
has zero mean phase error, excluded. To allow for 
symmetry, the summations in (10) should be made 
over the whole of reciprocal space; if they are only 
made over one asymmetric unit of reciprocal space 
then appropriate multiplicity factors will need to be 
associated with the structure factors, according to 
their type. It should also be noted that (10) is an 
exact result; if the right-hand side is calculated using 
the individual phase errors then the map correlation 
coefficient is available, a measure of the quality of 
the resultant density map. For estimated phases 
equal to the true phases the value of R is 1.0 while 
for random phases it will be zero. 

Mathematical analysis 

The relationship between true density and structure 
factors is given by 

p , ( r )=(1 /V)~F, (h )exp( -2~ ih . r ) ,  (3) 
h 

where F,(h) has the observed magnitude, :Fo(h), and 
the true phase, ~0,(h). Since exp(-2~r ih . r )  averaged 
over the unit cell is zero, unless h = 0 when it equals 
unity, then it is evident that 

p,(r) = (1/V)F(0) (4) 

= pe(r), 

since it is phase independent. From (3) we also find 

p2(r) = (1/V2)2 2 F,(h)F,(k)exp[ - 2rri(h + k).r]. (5) 
h k 

When averages are taken on the two sides the only 
finite contributions on the right-hand side are when h 
+ k = 0 or k = - h  so that 

= (1/V2)• 'F,,(h)'. 2 (6) 
h 

= ~-~e(r), 

since it is phase independent. In a similar way to (5) 
we find 

p,(r)p ,,(r) = ( 1 / V 2) Z Z F,(h ) F,,(k )ex p [ - 2 -n-i(h + k ).r], 
h k 

(7) 

and after averaging the two sides 

pt(r)p,,(r) = (1/V2)~ F,(h) Fe(h). (8) 
h 

After combining terms for which the pairs of 
indices are h, h and h, h we find 

pt(r)p,,(r) = (I/V2)Z !Fo(h)12cos[Aq~(h)]. (9) 
h 

Use of modified maps 

In direct-methods work it is usual to calculate E 
maps rather than F maps because, with data at 
atomic resolution they are better at defining the 
position of an atomic peak, albeit that they introduce 
noise in the form of diffraction ripples in other parts 
of the map. Equation (10) requires no modification 
in this case; E's are used in place of F's and the 
correlation is found with respect to an E map with 
perfect phases. 

What is not so straightforward is when a 
weighting scheme is used which modifies the magni- 
tude of the Fourier coefficient according to an assess- 
ment of the likely error of the phase estimate. For 
example in the low-density elimination scheme 
described by Shiono & Woolfson (1992), which 
involved the iterative modification of density maps, a 
weighted E map was used where the weight was 

w(h) = tanh[J-(h)E(h)/2-f 71'2] (11) 

w h e r e / ( h )  is the magnitude of the hth Fourier 
coefficient of the previous map and ~--:7~1,2 is the 
root-mean-square value of t h e / ' s .  Given that the 
normal E map, or F map, with true phases is the 
ideal target of the phasing procedure then the value 
of R should be calculated with respect to this. By 
similar reasoning which gave rise to (10) it can be 
shown that where a weight w(h) is associated with 
F(h) then the corresponding map correlation coeffi- 
cient is given by 

w(h)lFo(h)lZcos[  (h)] 
h(h ~ O) 
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Given that  the values of  A~o(h) are known this is 
easily calculated. 

Use of partial phase information 

Let ,'~' be the whole set of  reflections for which the 
structure ampli tudes IF(h)l or IE(h)l are known. Fre- 
quently phases are determined for only a subset, ~'~, 
of  the reflections, for example reflections at low 
resolution or a subset or large normalized structure 
factors• For  such a situation, by reasoning similar to 
that  which gave (10) and (12), we find the initial 
value of  R 

E IFo(h)12cos[a~(h)] 
R i n i t  - he,., (13) 

2"11/2 r 2"11/2 

l o(. l ] 
The next stage is to find some addit ional  phases 

for some set of  reflections, ~':  and the map corre- 
lation coefficient for the extended phases becomes 

Z IFo(h)12cos[Zl¢(h)] 
R ext  " -  h e.¢. ] U ~ 2 

,,~: [Fo(h)l ,,e~ u~2 IF°(h)l 

The question which now arises is whether the 
extended phases give a better, i.e. higher, value of R 
than the initial ones; clearly if the extended phases 
were all absolutely correct the map would be better 
but if they were random then the map would be 
worse. The condit ion for a map with a larger map 
correlat ion coefficient is 

R e x  t > R i n i t  (15) 

or, in the full form 

y~ I F o t ~ ) 1 2 c o s [ a ~ ( b ) ]  
h e  ~, ~ U ¢ 2 

~ IFo(h)12cos[zko(h)] 
h e / ,  

> 

This inequality may be t ransformed to 

Y I F o t ~ ) l Z c o s [ A ~ ( h ) ] +  E I r o ( h ) l Z c o s [ ~ ) ]  
h e  6 j h e , ¢  

(16) 

o r  

E I F o ( h ) l ~ c o s [ a ~ ( h ) ]  
he~ 2 

} L -i ,IFo(h)[ J 

(18) 

If  we now write as the inner correlat ion coefficient 
of  a set :¢k 

kRi,={,~,.,IFo(h)i2cos[A~p(h)]}/[h~,. IFo(h)l 2] (19) 

and write 

{[ ] } 1/2 

Y IFo(h)l z Z IFo(h)l z 
q = 2 h e f ' '  1+  he.'.2 --1 , (20) 

E Iro(h)l z E IFo(h)l 2 
h e ~  2 h e : g  I 

then condit ion (15) that  the map correlation 
coefficient should increase becomes 

2Rin > lq ~Ri.. (21) 

The factor q may  be expressed as a function of  the 
ratio 

t= [h~,21Fo(h)[2] / [h~, " ,IFo01)12], (22) 

y(0 

0"5 

,0J 

IFo()12] "2 ' ' ' ' ' ' ' ' ' E h o s ~o 
h E ~  t U ¢ - 2  t 

7. IFo(h)lecos[A~(h)] 
hE;~. I > , (17) ,l o(.,Iq 

Fig. 1. The function y(t). The quantity t is the ratio of the sum of 
the squares of the structure amplitudes of the extension set to 
that of the original set of reflections, y(t) defines the condition 
under which the extension set will increase the map correlation 
coefficient. 



V. Y. LUNIN AND M. M. WOOLFSON 533 

and is equal to 

q = 2[(1 +/ )1 /2_  1]/t = y(t). (23) 

The function y(t)  is shown in Fig. 1; it equals 1 for 
t = 0 and decreases monotonically with increasing t. 
Since y(t)  _< 1 for all t _ 0 then it follows that 2Rin > 
~Rin is a sufficient condition for Rex t > Rinit. 

If the value of t, as defined by (22) is small then q 
is very close to 1 so that the condition for improving 
the map correlation coefficient by estimating more 
phases is that the inner correlation coefficient for the 
extension phases must be at least half of that for the 
starting phase set. In a particular case if the exten- 
sion set :~ 2 contains only one phase and all the 
phases of the starting set :~ l are correctly determined 
then condition (21), which applies to the single 
reflection in :, 2, becomes 

cos (a~)  > 

or 

Ia~l < 60 °. (24) 

It should also be noted that since l Rin < 1 and q _< 
1 the condition 

2Rin > 

is sufficient to have improved correlation. This 
implies that if the IF[2-weighted mean of cosA~0 of 

the extension set is greater than 0.5 (corresponding 
to ]A,] < 60 ° if all the phase errors had the same 
magnitude) then the extended map would have a 
higher correlation coefficient whatever the phase 
errors of the original phase set. As a more general 
example we consider lRin equal to 0.7, corresponding 
to a mean phase error of order 45°; if q = 0 . 8 ,  
implying t = 1, so that the sum of intensities of the 
extension set equals that of the original set, then (21) 
implies that 2Rin > 0.28. In such a case mean phase 
errors of the extension set, even as high as 73 °, will 
increase the map correlation coefficient. 
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